
2019 ICPC North Central USA Regional Contest
Solution Outlines

Greg Hamerly, modified for NCNA by Bryce Sandlund

November 9, 2019

The Judges NCNA 2019 solutions

F– Pulling their weight

Description
Given a list of weights (w1,w2, . . . ,wn), find the smallest integer t where∑

wi<t

wi =
∑
t<wi

wi

i.e. sum of weights < t equals sum of weights > t.

E.g. for (1, 2, 3, 6) the best t is 4.

Solution
Insight: t is either a given weight, or a weight plus one.

Consider each unique weight (or weight plus one) as a possible t, in sorted
order.

For each possible t, determine if it is the solution.

Can be done in O(n log n) time (for the sort).

The Judges NCNA 2019 solutions

F– Pulling their weight

Description
Given a list of weights (w1,w2, . . . ,wn), find the smallest integer t where∑

wi<t

wi =
∑
t<wi

wi

i.e. sum of weights < t equals sum of weights > t.

E.g. for (1, 2, 3, 6) the best t is 4.

Solution
Insight: t is either a given weight, or a weight plus one.

Consider each unique weight (or weight plus one) as a possible t, in sorted
order.

For each possible t, determine if it is the solution.

Can be done in O(n log n) time (for the sort).
The Judges NCNA 2019 solutions

F– Pulling their weight

Feasible Solutions
When considering a certain t, if any weights are equal to t, we can just
ignore them.

Some lists of integers are invalid inputs:
If we just make up a list of weights, it might not have a solution.

E.g. there is no t for (1, 2, 4).

But the problem guarantees that every given input has a solution (so
(1, 2, 4) cannot occur).

The Judges NCNA 2019 solutions

F– Pulling their weight

Solution Strategy Details
Define:

(s1, s2, . . . , sk) are the sorted unique weights
M(w) is the number of times w appears in the input (multiplicity)
P(i) =

∑i
j=1 si ·M(si) is a prefix sum

S = P(k) is the sum of the whole sequence

For each i in 1 to k :
if P(i) = S − P(i) + si ·M(si), then t = si

i.e. prefix and suffix sums are the same, ignoring all values equal to t

if t is not any sj and P(i) = S − P(i), then t = si + 1
i.e. prefix and suffix sums are the same; no weight is equal to t

Runtime: O(n log n) for sorting, and O(n) for everything else.

The Judges NCNA 2019 solutions

G– Birthday Paradox

Description
Given a list of integers, find the probability of this list occurring.

Here each integer represents the number of people sharing some birthday.

Assume each person has 1/365 chance of any given birthday.

Solution
The solution can be derived using the multinomial probability distribution,
and counting the number of possible reorderings.

The Judges NCNA 2019 solutions

G– Birthday Paradox

Description
Given a list of integers, find the probability of this list occurring.

Here each integer represents the number of people sharing some birthday.

Assume each person has 1/365 chance of any given birthday.

Solution
The solution can be derived using the multinomial probability distribution,
and counting the number of possible reorderings.

The Judges NCNA 2019 solutions

G– Birthday Paradox

Solution Strategy
Let p = 1/365 in what follows, and input values be X = (x1, x2, . . . , xk).

The multinomial probability distribution PM answers the question “What is
the probability of observing all xi on fixed days?” That is, the first k days
of the year.

PM(X) =
n!∏k

i=1 xi !
pn

where n =
∑k

i=1 xi .

However, this isn’t enough – we cannot assume these people’s birthdays are
the first k days of the year.

So how many different ways can we arrange their birthdays?

The Judges NCNA 2019 solutions

G– Birthday Paradox

Solution Strategy

There are
(365

k

)
ways to choose k days out of 365.

Additionally, we can reorder the xi ’s:
if the xi ’s are unique, then there are k! orderings;
if some xi ’s are the same, then there are fewer...

Let C = (c1, c2, . . . , cj) be the frequency counts of each xi value. E.g. if
X = (1, 1, 1, 5, 5) then C = (3, 2). Then the number of unique ways to
reorder the xi ’s is

(
∑

cj)!∏
(cj !)

which also arises from the multinomial distribution.

The Judges NCNA 2019 solutions

G– Birthday Paradox

Solution Strategy
Putting this all together, the answer is:

PM(X) ·
(
365
k

)
·
(
∑

cj)!∏
(cj !)

We can do all of this in log-space (the lgamma function is useful here).

Running time: O(k) for k inputs.

The Judges NCNA 2019 solutions

J– This Ain’t Your Grandpa’s Checkerboard

Description
Given a grid of B and W characters, is it “valid”?

Invalid: unequal numbers of B and W values in a row/column, or a run of
three of the same values in a row/column.

Solution
Read the input; check each row/column; report the answer.

Transpose: you can check each row, transpose the whole grid, then check
each row (which was a column).

Running time: O(n)

The Judges NCNA 2019 solutions

J– This Ain’t Your Grandpa’s Checkerboard

Description
Given a grid of B and W characters, is it “valid”?

Invalid: unequal numbers of B and W values in a row/column, or a run of
three of the same values in a row/column.

Solution
Read the input; check each row/column; report the answer.

Transpose: you can check each row, transpose the whole grid, then check
each row (which was a column).

Running time: O(n)

The Judges NCNA 2019 solutions

H– On Average They’re Purple

Description
Given a graph, how can Anna color the edges (red/blue) to force Bob to
change colors the maximum number of times? Bob is trying to minimize
the number of color changes while going between two designated nodes.

At first glance this feels like a difficult problem. But there’s a simple
solution hiding inside.

Solution
Just find the shortest path from source to destination using breadth-first
search. If the path length is k then the answer is k − 1.

The Judges NCNA 2019 solutions

H– On Average They’re Purple

Description
Given a graph, how can Anna color the edges (red/blue) to force Bob to
change colors the maximum number of times? Bob is trying to minimize
the number of color changes while going between two designated nodes.

At first glance this feels like a difficult problem. But there’s a simple
solution hiding inside.

Solution
Just find the shortest path from source to destination using breadth-first
search. If the path length is k then the answer is k − 1.

The Judges NCNA 2019 solutions

H– On Average They’re Purple

Solution Strategy
Proof idea that the shortest path finds the answer:

Consider starting at the source node. Anna colors every edge touching that
node red (say), to maximize the chance of changing colors at a subsequent
edge.

Now move one hop away, along any edge. Anna wants to color all
newly-reachable edges blue, to force a color change.

This argument generalizes to k hops away.

Thus, the shortest path of length k changes colors k − 1 times, which is
the most Anna can force Bob to do.

Runtime for BFS: O(N +M) for N nodes and M edges.

The Judges NCNA 2019 solutions

B– Code Names

Description
Given a list (n ≤ 500) of anagram words with no duplicate letters, find the
size of the largest “swap-free” set.

Two words are NOT swap-free if they differ by swapping two letters (e.g.
abcdef and aecdbf are NOT swap-free).

Solution
This appears to be an NP-hard problem – finding a maximum independent
set. But there is more structure to the problem.

We can reduce this to a maximum bipartite matching (maximum flow)
problem.

Identify the bipartite structure, construct the edges, find a maximum
matching using network flow.

The Judges NCNA 2019 solutions

B– Code Names

Description
Given a list (n ≤ 500) of anagram words with no duplicate letters, find the
size of the largest “swap-free” set.

Two words are NOT swap-free if they differ by swapping two letters (e.g.
abcdef and aecdbf are NOT swap-free).

Solution
This appears to be an NP-hard problem – finding a maximum independent
set. But there is more structure to the problem.

We can reduce this to a maximum bipartite matching (maximum flow)
problem.

Identify the bipartite structure, construct the edges, find a maximum
matching using network flow.

The Judges NCNA 2019 solutions

B– Code Names

Solution Strategy
Define: two words are neighbors if they are NOT swap-free.

Identify the bipartite graph structure.
Construct a graph with edges between neighbors.
Each pair of words are anagrams – think permutations.
Permutations have parity – equal to the parity of the number of
inversions.
Swapping (any) two letters changes the parity. Thus,

Two words cannot be neighbors if they have the same parity.
Two words might be neighbors if they have different parity.

Construct the graph in O(N2) time.

The Judges NCNA 2019 solutions

B– Code Names

Solution Strategy
Once we’ve defined the bipartite structure on N words, the maximum
independent set can be found by taking N −M where M is the maximum
number of matches in the bipartite graph.

Run maximum bipartite matching using any algorithm in O(N3) time
worst-case to find M.

The Judges NCNA 2019 solutions

D– Some Sum

Description
Given a number N, is it possible that the sum of N consecutive numbers is
even, odd, or both?

Solution
Since the bounds on the values of the numbers are small (1 to 100), just
try all possible sums of length N. Running time: O(N).

There’s also an O(1) time solutions by inspecting the value of N mod 4:
if N mod 4 = 0, the answer is even
if N mod 4 = 2, the answer is odd
otherwise, the answer is either

This is because the sum of 4 consecutive numbers is even.

The Judges NCNA 2019 solutions

D– Some Sum

Description
Given a number N, is it possible that the sum of N consecutive numbers is
even, odd, or both?

Solution
Since the bounds on the values of the numbers are small (1 to 100), just
try all possible sums of length N. Running time: O(N).

There’s also an O(1) time solutions by inspecting the value of N mod 4:
if N mod 4 = 0, the answer is even
if N mod 4 = 2, the answer is odd
otherwise, the answer is either

This is because the sum of 4 consecutive numbers is even.

The Judges NCNA 2019 solutions

I– Full Depth Morning Show

Description
You are given a tree with N nodes, where every node has a tax value tu
and each edge has some weight wi . The cost of a path between nodes u
and v is equal to (tu + tv) dist(u, v). For each node u, compute the sum of
the costs of all paths to all other nodes v .

Solution
The above expression can be broken up into tu dist(u, v) + tv dist(u, v).
Compute for some arbitrary root in O(N) time. Then computing the
answer for a neighboring node can be done in O(1) time.

The Judges NCNA 2019 solutions

I– Full Depth Morning Show

Description
You are given a tree with N nodes, where every node has a tax value tu
and each edge has some weight wi . The cost of a path between nodes u
and v is equal to (tu + tv) dist(u, v). For each node u, compute the sum of
the costs of all paths to all other nodes v .

Solution
The above expression can be broken up into tu dist(u, v) + tv dist(u, v).
Compute for some arbitrary root in O(N) time. Then computing the
answer for a neighboring node can be done in O(1) time.

The Judges NCNA 2019 solutions

I– Full Depth Morning Show

Formula
Fix some node u as the root, compute two quantities:

au =
∑
v

dist(u, v)

bu =
∑
v

tv dist(u, v)

The Judges NCNA 2019 solutions

I– Full Depth Morning Show

Formula
Fix some node u as the root, compute two quantities:

au =
∑
v

dist(u, v)

bu =
∑
v

tv dist(u, v)

Solution Strategy
Then the answer for node u is just tuau + bu.

How do we compute au′ and bu′ for some neighbor u′ of u?

The Judges NCNA 2019 solutions

I– Full Depth Morning Show

Formula
Fix some node u as the root, compute two quantities:

au =
∑
v

dist(u, v)

bu =
∑
v

tv dist(u, v)

Solution Strategy
Then the answer for node u is just tuau + bu.

How do we compute au′ and bu′ for some neighbor u′ of u?

The Judges NCNA 2019 solutions

I– Full Depth Morning Show

Formula
Fix some node u as the root, compute two quantities:

au =
∑
v

dist(u, v)

bu =
∑
v

tv dist(u, v)

Solution Strategy (continued)
Let w be the length of the edge between u and u′. For all nodes in the
subtree of u′ when the tree is rooted at u, their distance to the root
decreases by w . For all other nodes, the distance increases by w . If we let
size(u) be the size of the subtree rooted at u, then

au′ = au + w(N − size(u))− w size(u)

The Judges NCNA 2019 solutions

I– Full Depth Morning Show

Formula
Fix some node u as the root, compute two quantities:

au =
∑
v

dist(u, v)

bu =
∑
v

tv dist(u, v)

Solution Strategy (continued)
Similarly, if we let tax(u) be the sum of the tax values of all nodes in the
subtree rooted at u, then

bu′ = bu + w(tax(root)− tax(u))− w tax(u)

The Judges NCNA 2019 solutions

I– Full Depth Morning Show

Formula
Fix some node u as the root, compute two quantities:

au =
∑
v

dist(u, v)

bu =
∑
v

tv dist(u, v)

Runtime
Since these values can be updated in O(1), walking and updating the tree
and computing all values takes O(N) time in total.

The Judges NCNA 2019 solutions

A– Weird Flecks, But OK

Description
Given N points in 3 dimensions, find the smallest circle that encompasses
all of them in one of the three orthogonal planes.

Solution
Apply an efficient algorithm for smallest-circle three times (once for each
plane).

Welzl’s algorithm runs in O(N) time (expected). Other approaches also
work.

The Judges NCNA 2019 solutions

A– Weird Flecks, But OK

Description
Given N points in 3 dimensions, find the smallest circle that encompasses
all of them in one of the three orthogonal planes.

Solution
Apply an efficient algorithm for smallest-circle three times (once for each
plane).

Welzl’s algorithm runs in O(N) time (expected). Other approaches also
work.

The Judges NCNA 2019 solutions

A– Weird Flecks, But OK

Solution Strategy
Preliminaries: a circle can be uniquely defined by either two antipodal
points or three non-collinear points.

The math for finding the circle for three points is left to the reader.

Naive approach: for each plane, try all circles defined by every O(N2) pair
and O(N3) triple. For each circle, check if all N points are inside.

This approach is O(N4), too slow since N ≤ 5 000.

The Judges NCNA 2019 solutions

A– Weird Flecks, But OK

Solution Strategy: Binary Search + Angle Sweep
Once we’ve reduced the problem to two dimensions, we can binary search
on the radius of the minimum enclosing circle.

For any valid circle which covers all the points, we can translate it so at
least two input points lie on the boundary of the circle. Then, for each
input point, consider all circles with that point on its boundary. Each other
point is included in some range of angles. If there exists some angle that
includes all points, then this radius is attainable.

Runtime: O(N2 log 1 000).

The Judges NCNA 2019 solutions

A– Weird Flecks, But OK

Solution Strategy: Ternary Search for the center
Consider the following function: f (x , y) is the minimum radius of a circle
that has center at (x , y) and covers all the points in the input. Evaluating
f (x , y) once can be done in O(N) time.

We’ve now reduced our problem to finding the minimum value of f (x , y).
We can do this by doing two nested ternary searches: for a fixed x , the
value of f (x , y) is convex.

One heuristic to speed up this solution is to first take the convex hull of the
input points before computing values of f (x , y).

Runtime: O(N log2 1 000).

The Judges NCNA 2019 solutions

A– Weird Flecks, But OK

Solution Strategy: Welzl’s algorithm
Start with all points in set P and empty set R . Here R defines a set of
boundary-defining points (up to 3).

Welzl(P , R):
If P is empty or |R| = 3, return smallest circle defined by R .
Choose a point p ∈ P at random.
Recurse with P\{p} and R .
If the resulting circle C contains p, return C .
Otherwise, try again (recurse) with P\{p} and R ∪ {p}, and return
that circle.

Running time: O(N) expected time.

The Judges NCNA 2019 solutions

C– New Maths

Description
Given a number N, find the smallest integer a such that

a⊕ a = N.

Solution
Recursively backtrack through possible a from most significant digit to
least significant digit, or vice versa.

The Judges NCNA 2019 solutions

C– New Maths

Description
Given a number N, find the smallest integer a such that

a⊕ a = N.

Solution
Recursively backtrack through possible a from most significant digit to
least significant digit, or vice versa.

The Judges NCNA 2019 solutions

C– New Maths

Solution Strategy
Insight: The most significant digit of N is determined by the most
significant digit of a; similarly, the second most significant digit of N is
determined by the two most significant digits of a.

Let ak be the most significant digit of a. Then since a2
k ≡ N2k (mod 10),

this limits the choice of ak to one of at most two choices.

A similar property holds for ai : the choice of ai is severely constrained by
the choice of aj for all j > i and modular congruences. Testing can confirm
recursive backtracking through feasible digits of a is fast enough.

The Judges NCNA 2019 solutions

E– Early Orders

Description
Given a list of integers x1, x2, . . . , xn and a number k , find the
lexicographically smallest subsequence of x that contains each integer from
1 to k exactly once.

Solution
Iteratively construct the lexicographically smallest subsequence by
considering each xi one at a time.

The Judges NCNA 2019 solutions

E– Early Orders

Description
Given a list of integers x1, x2, . . . , xn and a number k , find the
lexicographically smallest subsequence of x that contains each integer from
1 to k exactly once.

Solution
Iteratively construct the lexicographically smallest subsequence by
considering each xi one at a time.

The Judges NCNA 2019 solutions

E– Early Orders

Solution Strategy
There are two cases to consider when considering xi .

1 The given integer is already present in our subsequence. We do
nothing.

2 The given integer is not present in our subsequence. This is the
interesting case to consider.

While our tentative subsequence is not empty, we will compare the
given integer to the last integer in our subsequence. If the given
integer is larger than the last integer in our subsequence, then append
it to the end of our subsequence. Otherwise, it is smaller than the last
integer. We can safely remove this integer if and only if there is
another appearance of this integer that will be considered later in the
sweep. We repeat this removal process until we can no longer remove
an integer, at which we perform the append.

The Judges NCNA 2019 solutions

K– Solar Energy

Description
Given a set of stars that emit energy with a launch angle a according to the
formula max(0,Ti − si · dist(ai , a)), determine the launch angle a that
maximize the total energy.

Solution
Consider each star simultaneously by running a sweep of all stars,
calculating the total energy at every point. Point the spaceship at the star
with the highest energy.

The Judges NCNA 2019 solutions

K– Solar Energy

Description
Given a set of stars that emit energy with a launch angle a according to the
formula max(0,Ti − si · dist(ai , a)), determine the launch angle a that
maximize the total energy.

Solution
Consider each star simultaneously by running a sweep of all stars,
calculating the total energy at every point. Point the spaceship at the star
with the highest energy.

The Judges NCNA 2019 solutions

K– Solar Energy

Solution Strategy
The first observation is that since the energy function is (piecewise) linear
in the angle, the derivative is constant. This implies the best angle to
launch the spacecraft will be directed at a star.

There are 105 stars, thus we cannot spend linear time to calculate the
energy achieved from launching the spacecraft at a particular star. Instead,
we must do a sweep, calculating the energy for all stars in one go. For each
star, we can determine at which angle the star starts contributing to the
energy of the launch, and similarly when that energy peaks and stops
contributing. Again, since the derivative is constant, we can maintain the
change in energy per radian moved, making it possible to find all energies
in O(n log n) total time, after sorting by radian. Care must be taken to
handle the circle properly, and stars that contribute energy no matter the
angle must be special-cased.

The Judges NCNA 2019 solutions

